(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), 0) → s(x)
gcd(0, s(x)) → s(x)
gcd(s(x), s(y)) → gcd(-(max(x, y), min(x, y)), s(min(x, y)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
min(s(x), s(y)) →+ s(min(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), 0') → s(x)
gcd(0', s(x)) → s(x)
gcd(s(x), s(y)) → gcd(-(max(x, y), min(x, y)), s(min(x, y)))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), 0') → s(x)
gcd(0', s(x)) → s(x)
gcd(s(x), s(y)) → gcd(-(max(x, y), min(x, y)), s(min(x, y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
-,
gcdThey will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd
(8) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
min, max, -, gcd
They will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s2_0(
n4_0),
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
min(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
s(min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0))) →IH
s(gen_0':s2_0(c5_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
max, -, gcd
They will be analysed ascendingly in the following order:
max < gcd
- < gcd
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s2_0(
n312_0),
gen_0':s2_0(
n312_0)) →
gen_0':s2_0(
n312_0), rt ∈ Ω(1 + n312
0)
Induction Base:
max(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
max(gen_0':s2_0(+(n312_0, 1)), gen_0':s2_0(+(n312_0, 1))) →RΩ(1)
s(max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0))) →IH
s(gen_0':s2_0(c313_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
-, gcd
They will be analysed ascendingly in the following order:
- < gcd
(15) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s2_0(
n700_0),
gen_0':s2_0(
n700_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n700
0)
Induction Base:
-(gen_0':s2_0(0), gen_0':s2_0(0)) →RΩ(1)
gen_0':s2_0(0)
Induction Step:
-(gen_0':s2_0(+(n700_0, 1)), gen_0':s2_0(+(n700_0, 1))) →RΩ(1)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) →IH
gen_0':s2_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(16) Complex Obligation (BEST)
(17) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
gcd
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(19) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
-(gen_0':s2_0(n700_0), gen_0':s2_0(n700_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n7000)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(24) BOUNDS(n^1, INF)
(25) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
max(gen_0':s2_0(n312_0), gen_0':s2_0(n312_0)) → gen_0':s2_0(n312_0), rt ∈ Ω(1 + n3120)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(26) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(27) BOUNDS(n^1, INF)
(28) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
0') →
s(
x)
gcd(
0',
s(
x)) →
s(
x)
gcd(
s(
x),
s(
y)) →
gcd(
-(
max(
x,
y),
min(
x,
y)),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) → gen_0':s2_0(n4_0), rt ∈ Ω(1 + n40)
(30) BOUNDS(n^1, INF)